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For the unitary ensembles of N_N Hermitian matrices associated with a weight
function w there is a kernel, expressible in terms of the polynomials orthogonal
with respect to the weight function, which plays an important role. For the
orthogonal and symplectic ensembles of Hermitian matrices there are 2_2
matrix kernels, usually constructed using skew-orthogonal polynomials, which
play an analogous role. These matrix kernels are determined by their upper left-
hand entries. We derive formulas expressing these entries in terms of the scalar
kernel for the corresponding unitary ensembles. We also show that whenever
w$�w is a rational function the entries are equal to the scalar kernel plus some
extra terms whose number equals the order of w$�w. General formulas are
obtained for these extra terms. We do not use skew-orthogonal polynomials in
the derivations.

KEY WORDS: Random matrices; matrix kernels; unitary ensembles;
orthogonal ensembles; symplectic ensembles; Laguerre ensembles.

1. INTRODUCTION

In the most common ensembles of N_N Hermitian matrices the probability
density PN(x1 , ..., xN) that the eigenvalues lie in infinitesimal neighbor-
hoods of x1 , ..., xN is given by

PN(x1 , ..., xN)=cN `
j<k

|xj&xk| ; `
j

w(x j)

where ;=1, 2 or 4 (corresponding to the orthogonal, unitary and symplectic
ensembles, respectively), w(x) is a weight function and cN is a normaliza-
tion constant.
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For the unitary matrix ensembles an important role is played by the
kernel

KN(x, y)= :
N&1

k=0

.k(x) .k( y) (1.1)

where [.k(x)] is the sequence obtained by orthonormalizing the sequence
[xkw(x)1�2]. The probability density is expressed in terms of it by

PN(x1 , ..., xN)=
1

N !
det(KN(x j , xk)) j, k=1, ..., N .

More generally the n-point correlation function Rn(x1 , ..., xn), the probabil-
ity density that n of the eigenvalues, irrespective of order, lie in infinitesimal
neighborhoods of x1 , ..., xn , is given by the formula

Rn(x1 , ..., xn)=det(KN(xj , xk)) j, k=1, ..., n . (1.2)

And the probability E(0; J) that the set J contains no eigenvalues is equal
to the Fredholm determinant of the kernel KN(x, y) /J ( y), where / denotes
characteristic function.

For the orthogonal and symplectic ensembles there are 2_2 matrix
kernels which play analogous roles. In this case the determinant in (1.2) is
to be interpreted as a quaternion determinant (it is a linear combination of
products of traces of products of matrix entries of the block matrix on the
right side), and the square of E(0; J) equals the Fredholm determinant of
the matrix kernel. (The last fact can be deduced from the computation in
ref. 3, Section A.7. A direct derivation is given in ref. 10.) In the case of the
orthogonal ensembles we shall always assume that N is even. The kernels
for the orthogonal and symplectic ensembles are of the form

KN1(x, y)=\ SN1(x, y)
ISN1(x, y)&=(x& y)

SN1D(x, y)
SN1( y, x) + (1.3)

and

KN4(x, y)=
1
2 \

SN4(x, y)
ISN4(x, y)

SN4D(x, y)
SN4( y, x) + (1.4)

respectively. Here =(x)= 1
2 sgn(x) and the explanation for the notation is this:

the SN;(x, y) are certain sums of products and if SN; is the operator with
kernel SN;(x, y) then SN;D(x, y) is the kernel of SN;D (D=differentiation)
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and ISN;(x, y) is the kernel of ISN; (I=integration, more or less). We shall
write these out below. One can see from this description that once the kernels
SN;(x, y) are known then so are the others.

Matrix kernels were first introduced by Dyson(1) for his circular
ensembles and he established the analogue of formula (1.2) for the correla-
tion functions. Later, Mehta(3) and Mehta and Mahoux(2) found matrix
kernels for the ensembles of Hermitian matrices, and expressed them in
terms of systems of skew-orthogonsal polynomials. These are like
orthogonal polynomials but the inner product (different in the ;=1 and
;=4 cases) is antisymmetric instead of symmetric. In terms of them one
obtains for SN;(x, y) sums like the one in Eq. (1.1) but which are a little
more complicated. A problem here is that the skew-orthogonal polyno-
mials are not always that easy to compute and, even if they are, the sums
involving them may not be easy to handle. For example, one is often inter-
ested in scaling limits as N � � and in order to do this it helps to have
a good representation for the sum.

In this paper we shall not use skew-orthogonal polynomials at all.
Instead, we shall use the expressions for the various matrix kernels in the
general form given in ref. 10, and derive general formulas for the SN;(x, y)
in terms of the scalar kernel KN(x, y) given by Eq. (1.1), with N replaced
by 2N when ;=4 and w replaced by w2 when ;=1. More exactly, we shall
express the operators whose kernels are the SN;(x, y) in terms of the
operator whose kernel is KN(x, y). These are given in Theorem 1 below.

The formulas can be brought to a very concrete form whenever the
support D of w is a finite union of finite or infinite intervals and w$�w is
equal to a rational function on D. (Such weight functions are called semi-
classical since they include the weight functions for all the classical
orthogonal polynomials.) We find then that the SN;(x, y) are equal to the
appropriate scalar kernel KN(x, y) plus some extra terms whose number is
independent of N. This number equals the order of w$�w, the sum of the
orders of its poles in the extended complex plane. We must also count as
a simple pole any end-point of D where w$�w is analytic. Thus, for the
Gaussian ensembles (w(x)=e&x 2

) and Laguerre ensembles (w(x)=x: e&x)
there will one extra term because of the simple poles at � and 0 respec-
tively, and for the Jacobi ensemble (w(x)=(1&x): (1+x);) there will be
two extra terms because of the simple poles at \1. For the Legendre
ensemble on (&1, 1) there will also be two extra terms although w$�w=0
in this case.

We shall produce explicit formulas for the extra terms, which are given
in Theorem 2. These will be used to work out the cases of the Gaussian
ensembles (well-known(4)) and the Laguerre ensembles (known apparently
only in the case :=0(6, 7)).
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To apply our formulas to the Laguerre ensemble we require at first
that :>0 so that Theorem 1 is applicable. The formulas for general
:>&1 are then obtained by analytic continuation. Similar analytic con-
tinuation arguments apply quite generally. (See the remark at the end of
Section 3.) For example, for the Legendre ensemble we would start with
the formulas for the Jacobi ensemble for :, ;>0 and then take the analytic
continuation (or limit) to obtain the fomulas for :=;=0. This is the
reason the end-points \1 count as poles.

The recent announcement(8) has some elements in common with ours.
A generalization of the Laguerre ensemble was considered there where e&x

was replaced by the exponential of an arbitrary polynomial and the
occurrence of only finitely many extra terms was established, without their
being evaluated, using skew-orthogonal polynomials. This fact was used to
deduce universality for this class of ensembles.

2. THE GENERAL IDENTITIES

We start with the expressions for the various matrix kernels in the
form given in ref. 10. (The notation here is slightly different.) Taking the
symplectic ensembles first, we let [ pj (x)] be any sequence of polynomials
of exact degree j and define .j (x)= pj (x) w(x)1�2. Let M be the 2N_2N
matrix with j, k entry ( j, k=0, ..., 2N&1)

mjk= 1
2 | ( pj (x) p$k(x)& pj$(x) pk(x)) w(x) dx

= 1
2 | (.j (x) .$k(x)&.j$(x) .k(x)) dx. (2.1)

This matrix is invertible and we write M&1=(+ jk). Then

SN4(x, y)= :
2N&1

j, k=0

.j$(x) +jk.k( y) (2.2)

and

ISN4(x, y)= :
2N&1

j, k=0

.j (x) +jk .k( y), SN4 D(x, y)=& :
2N&1

j, k=0

.j$(x) +jk .$k( y).

Any family of polynomials leads to the same matrix kernel. Of course at
this point the formulas look quite bad because of the + jk .
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For the orthogonal ensembles we take the pj as before but this time
define .j (x)= pj (x) w(x) and let M be the N_N matrix with j, k entry
( j, k=0, ..., N&1)

mjk=|| =(x& y) pj (x) pk( y) w(x) w( y) dy dx=| .j (x) =.k(x) dx. (2.3)

Here = denotes the operator with kernel =(x& y). Again M is invertible, we
write M&1=(+ jk), and the formulas for the kernels are

SN1(x, y)=& :
N&1

j, k=0

.j (x) +jk =.k( y),

ISN1(x, y)=& :
N&1

j, k=0

=.j (x) + jk=.k( y),

SN1 D(x, y)= :
N&1

j, k=0

.j (x) +jk.k( y).

We change notation so that we can treat the two cases at the same
time��we shall see that they are interrelated. We continue to use the nota-
tions N and w, but when ;=4 the N here will be the 2N of Eq. (2.2) and
when ;=1 the w here will be square of the weight function in Eq. (2.3).
Thus in both cases N is even, we take pj to be polynomials of exact degree
j and set .j= pj w1�2. The matrices (m (;)

jk ) and (+ (;)
jk ) are the M and M&1

corresponding to the ;=4 and 1 ensembles. We set

S (4)
N (x, y)= :

N&1

j, k=0

. j$(x) + (4)
jk .k( y), S (1)

N (x, y)=& :
N&1

j, k=0

.j (x) + (1)
jk =.k( y).

Finally, KN(x, y) will denote the ;=2 scalar kernel (1.1).
We denote by H the linear space spanned by the functions

.0 , ..., .N&1 , in other words the set of all functions of the form w1�2 times
a polynomial of degree less than N. We denote by K be the projection
operator onto H. Its kernel is KN(x, y). Finally, we denote by S (4) the
operator with kernel S (4)

N (x, y) and by S (1)$ the operator with kernel
S (1)

N ( y, x).
The following lemma will identify these operators. We think of our

weight functions as defined on all of R, and our basic assumptions are

H/L1(R), DH/L1(R). (2.4)
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The former is needed even to define the ensembles. The latter is restrictive
and implies in particular that all the .k are absolutely continuous. (If our
weight function is initially defined on a domain D it must vanish at the
end-points of D for its extension to all of R, defined by setting it equal to
zero outside D, to be absolutely continuous.) We use the notations DH

and =H for the restrictions of the operators D and =, respectively, to H.

Lemma. The operators KDH and K=H are invertible and

S (4)|H=D(KDH)&1, S (4)| H==0,

S (1)$|H==(K=H)&1, S (1)$| H==0.

Proof. Integrating by parts the second integral in Eq. (2.1) shows
that m (4)

jk =� .j (x) .$k(x) dx. (This is where the absolute continuity of the
.k come in.) Thus for i=0,..., N&1,

S (4)K. i$=:
j, k

.j$+ (4)
jk (.k , .i$)=:

j, k

.j$+ (4)
jk m (4)

ki =:
j

.j$$ji=.i$ .

Since the .i span H we see that S (4)K.$=.$ for all . # H. This shows
that KDH is a one-one, and hence invertible, operator on H, and also that
S (4)|H=D(KDH)&1. Of course S (4)|H==0 since each .k # H. This proves
the first part of the lemma. For the second, observe that by the antisym-
metry of (m (1)

jk ) the formula for S (1)
N ( y, x) can be obtained from the formula

for S (4)
N (x, y) by replacing m (4)

jk by m (1)
jk and .j$(x) by =.j (x). Thus the

second part of the lemma can be proved just as the first, replacing D
everywhere by =.

To identify (KDH)&1 and (K=H)&1 more concretely we shall enlarge
the domains of D and =. We have DH/L1(R) by assumption, and
=H/L�(R) since H/L1(R). It is easy to see that the operators

D: H+=H � H+DH, =: H+DH � H+=H

are mutual inverses. In the following, IH+DH and IH+=H will denote the
identity operators on the spaces H+DH and H+=H, respectively.

Theorem 1. We have

S (4)=(IH+DH&(I&K ) DK=)&1 K, (2.5)

S (1)$=(IH+=H&(I&K ) =KD)&1K. (2.6)
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Proof. Since D and = are mutual inverses we might guess that a good
approximation to the inverse of KDH is K=H , where =H denotes the restric-
tion of = to H. With this in view, we compute

K=KDH=K=DH&K=(I&K ) DH=IH&K=(I&K ) DH

where IH denotes the identity operator on H. The operator on the right
side is invertible since both KDH and K=H are, and we deduce that

(KDH)&1=(IH&K=(I&K ) DH)&1 K=H .

Hence by the lemma,

S (4)|H=DH(KDH)&1=KDH(KDH)&1+(I&K ) DH(KDH)&1

=IH+(I&K ) DH(IH&K=(I&K ) DH)&1 K=H .

Recall that the domain of = is H+DH and set

A=(I&K ) DH : H � H+DH, B=K=: H+DH � H.

Then

IH+DH+(I&K ) DH(IH&K=(I&K ) DH)&1 K=

is equal in this notation to IH+DH+A(IH&BA)&1 B. This in turn equals
(IH+DH&AB)&1. Hence restricting to H gives

S (4)|H=(IH+DH&(I&K ) DK=)&1| H .

Since S (4)|H==K| H==0 this gives (2.5), and (2.6) is obtained by an
analogous argument, interchanging the roles of D and =.

Remark. The identities of the theorem may be restated in the rather
more complicated form

S (4)=K+(I&K ) DK=(IH+DH&(I&K ) DK=)&1 K,

S (1)$=K+(I&K ) =KD(IH+=H&(I&K ) =KD)&1 K.

The summands on the right may be thought of as corrections and we see
that they will be of finite rank (independent of N ) whenever (I&K ) DK=
and (I&K ) =KD are. This will be true whenever the commutator [D, K] is,
which will be the case in what follows.
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3. THE CASE OF RATIONAL w$�w

We assume now that w$�w is a rational function on the support of w
and, at first, that Eq. (2.4) holds so that Theorem 1 is applicable. We
explain at the end of this section how to remove the restriction in the cases
of greatest interest. From now on it will be convenient to take the pj to be
the polynomials orthonormal with respect to the weight function w so that
the .j are orthonormal with respect to Lebesgue measure.

It follows from the Christoffel-Darboux formula that there is a
representation

KN(x, y)=aN
.N(x) .N&1( y)&.N&1(x) .N( y)

x& y

=aN(.N(x) .N&1(x)) \ 0
&1

1
0+\

.N( y)
.N&1( y)+<(x& y) (3.1)

for a certain constant aN . This holds for an arbitrary weight function.
Whenever w$�w is a rational function there is a differentiation formula

\ .$N
.$N&1+=\ A

&C
B

&A+\
.N

.N&1+
where A(x), B(x) and C(x) are rational functions whose poles are among
those of w$�w, counting multiplicity. (See ref. 9, Section 6.) From this
and Eq. (3.1) we find that the kernel of [D, K], which equals (�x+�y)
KN(x, y), is equal to

aN(.N(x) .N&1(x)) \
C(x)&C( y)

x& y
A(x)&A( y)

x& y

A(x)&A( y)
x& y

B(x)&B( y)
x& y +\ .N( y)

.N&1( y)+ . (3.2)

It follows from this that [D, K] is a finite rank operator, and that its
kernel is expressible in terms of the functions

xk.N&1(x), xk.N(x), (0�k<n�) (3.3)

where n� is the order of w$�w at infinity and, for each finite pole x i of w$�w,
the functions

(x&xi)
&k&1 .N&1(x), (x&xi)

&k&1 .N(x), (0�k<nxi
) (3.4)

354 Widom



where nxi
is the order of w$�w at xi . This is seen by expanding the functions

appearing in the central matrix in (3.2), which is simple algebra.
In the space spanned by these 2n functions (n is the total order of

w$�w) there is, when N�n, a subspace of dimension n contained in H and
a subspace of dimension n contained in H=. To see the first, an inductive
argument using the three-term recurrence formula shows that the sub-
space spanned by the functions (3.3) contains the n� functions .N&k

(0<k�n�) which lie in H. The functions (3.4) span a space of dimension
2 � nxi

consisting of functions which equal w1�2 times rational functions
which may have poles at the xi of order nxi

. A function in this space will
belong to H if the principal parts at all these poles vanish. This gives � nxi

conditions in a space of dimension 2 � nxi
, giving us a subspace of dimen-

sion � nxi
which is contained in H. Thus the space spanned by the func-

tions (3.3) and (3.4) together contains a subspace of dimension n contained
in H. To see that there is an n-dimensional subspace lying entirely in H=,
observe that H is spanned by the functions

.N&k (k<n�), .k (k<n&n�), ` (x&xi)
nxi xk (k<N&n).

Our 2n functions are all orthogonal to the last of these, whereas
orthogonality to the remaining ones imposes n conditions, giving a sub-
space of dimension n which is contained in H=.

It follows from the preceding discussion that the space spanned by
the functions (3.3) and (3.4) contains n linearly independent functions
�1 ,..., �n lying in H and n linearly independent functions �n+1 ,..., �2n lying
in H=. And we have a representation

[D, K]= :
2n

i, j=1

Aij�i��j (3.5)

for some constants Aij which can be determined from Eq. (3.2) once we
have fixed the �i . (We use the notation a�b for the operator with kernel
a(x) b( y).) It follows that also

[=, K]= :
2n

i, j=1

Aij=�i�=� j . (3.6)

Here we used =D=D==I, the antisymmetry of = and the easy fact that
(a�b) T=a� (T $b) for any operator T. These will be used again below
without comment.

The matrix A=(Aij) is symmetric since K is symmetric and D is
antisymmetric. (We hope this A will not be confused with the function A
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appearing in Eq. (3.2).) Since K is the projection operator onto H the
commutator [D, K] takes H into H= and H= into H. Hence

Aij=0 if i, j�n or i, j>n. (3.7)

After a little more notation we shall be able to state the formulas. We
already have the matrix A. We define the matrix B by

Bij=(=�i , �j).

Define J to be the matrix whose i, j entry equals 1 if i= j�n and 0
otherwise. Finally, set

C=J+BA

and write A0 for the matrix obtained from A by deleting its last n columns,
C0 for the matrix obtained from C by deleting its last n rows and C00 for
the matrix obtained from C by deleting its last n rows and its last n
columns. Observe that by Eq. (3.7) the first n rows of A0 are zero.

Theorem 2. We have

S (4)
N (x, y)=KN(x, y)& :

i>n, j

(A0C &1
00 C0) ij �i (x) =�j ( y) (3.8)

S (1)
N (x, y)=KN(x, y)& :

i�n, j

[AC(I&BAC )&1] ji � i (x) =�j ( y). (3.9)

Proof. Using (3.5) we find

(I&K ) DK==[D, K] K==\:
i, j

A ij�i��j+ K==& :
j�n, i

Aij �i�=�j

since K�j=�j when j�n and K�j=0 when j>n. Thus

I&(I&K ) DK==I+ :
j�n, i

Aij �i �=�j .

Now if we have a finite rank operator � ai�bi then

\I+: a i�b i+
&1

=I&:
i, j

T &1
ij a i�b j (3.10)

356 Widom



where T is the matrix with entries

Tij=$ij+(bi , aj).

In our case i, j�n and

ai=:
k

Aki�k , bi==� i

so

Tij=$ ij+:
k

(=� i , �k) Akj=$ij+:
k

BikAkj .

This equals (I+BA) ij=Cij and so we have shown

(I&(I&K ) DK=)&1=I& :
i, j�n

(C00)&1
ij \:

k

Aki �k�=�j+
whence

S (4)=(I&(I&K ) DK=)&1 K=K& :
i, j�n

:
k

Aki(C00)&1
ij �k�K=�j . (3.11)

To compute K=�j we apply Eq. (3.6) to �j , using the fact that �j # H, to
obtain

K=�j==�j&:
l, k

Alk =�l (=�k , �j)==�j&:
l, k

Alk Bkj=� l

==�j+:
l

(BA) jl =�l=:
l

Cjl =�l . (3.12)

Here we used the symmetry of A and the antisymmetry of B. Substituting
this into (3.11) gives

S (4)=(I&(I&K ) DK=)&1 K=K&:
k, l

(A0C &1
00 C0)kl �k �=� l

which is the same as Eq. (3.8).
To derive Eq. (3.9) we use Eq. (3.6) and find that

(I&K ) =KD=[=, K] KD=&:
i, j

Aij =�i�DK=�j . (3.13)

357Orthogonal, Symplectic and Unitary Matrix Ensembles



Using Eq. (3.5) again and the fact that D==I we see that

DK=�j=K�j+:
k, l

Akl �k(� l , =�j)=K�j+:
k, l

BjlAlk �k .

Again we use the fact that K�j=�j when j�n and K� j=0 when j>n. If
we recall the definitions of J and C we see that we have shown DK=�j=
�k C jk�k . Substituting this into Eq. (3.13) gives

(I&K ) =KD=& :
i, j, k

AijC jk =�i ��k

and so

I&(I&K ) =KD=I+:
i, k

(AC ) ik =�i ��k .

We use Eq. (3.10) again, this time with i, j�2n and

ai=:
k

(AC )ki =�k , bi=�i .

Now we have

Tij=$ ij+:
k

(�i , =�k)(AC )kj=$ij&:
k

B ik(AC )kj=(I&BAC ) ij .

Hence Eq. (3.10) gives

(I&(I&K ) =KD)&1=I&:
i, j

(I&BAC )&1
ij :

k

(AC )ki =�k ��j

=I&:
j, k

[AC(I&BAC )&1]kj =�k ��j .

To obtain S (1)$ we must right-multiply by K, which has the effect of imposing
the restriction j�n. After taking transposes and changing notation we
obtain Eq. (3.9).

Remark. Here is how to extend the results to the case where the second
part of Eq. (2.4) may not be satisfied but the support D of w consists of a finite
union of intervals. Denote now by xi the poles of w$�w together with all finite
end-points of D where w$�w is analytic. Then we can write

w(x)=`
i

(x&xi)
:i w0(x)
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where w0 satisfies Eq. (2.4) and each :i>&1. Think of w, and therefore the
kernels KN(x, y), S (4)

N (x, y) and S (1)
N (x, y), as functions of the :i . Theorem 2

would apply to w itself if all the :i>0 since then Eq. (2.4) would be
satisfied. But the constituents of these kernels are real-analytic functions of
the :i , so the formulas for :i>&1 (and therefore for our given weight
function w) can be obtained by analytic continuation of the formulas for
:i>0.

4. THE GAUSSIAN AND LAGUERRE ENSEMBLES

These are (essentially the only) cases where n=1 and are especially
simple, as we shall now see.

By the symmetry of A and Eq. (3.7), A has the form

A=\0
*

*
0+

for some constant *. There arise two functions, �1 and �2 , the first lying
in H and the second lying in H=.

Since the two 2_2 matrices A and B have 0 diagonal entries, AB is
a diagonal matrix and therefore so is C. Therefore Eq. (3.12), in which
j=1, says that K=�1=C11 �1 . Since K=H is invertible C11{0, and so
=�1 # H. This implies that all entries of B vanish, so B=0, C=J. It is
immediate from these facts that

A0C &1
00 C0=AC(I&BAC )&1=\0

*
0
0+ .

Hence by Theorem 2,

S (4)
N (x, y)=KN(x, y)&*�2(x) =�1( y),

S (1)
N (x, y)=KN(x, y)&*�1(x) =�2( y).

It remains to find the constant * and the functions �1 and �2 in the two
cases.

The Gaussian Ensembles. Here the pole is at x=�. Clearly
�1=.N&1 and �2=.N in this case. Moreover we have for this ensemble

aN=- N�2, A(x)=&x, B(x)=C(x)=- 2N
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so we find from Eq. (3.2) that

A=\ 0
&- N�2

&- N�2
0 +

which gives *=&- N�2. Therefore

S (4)
N (x, y)=KN(x, y)+- N�2 .N(x) =.N&1( y),

S (1)
N (x, y)=KN(x, y)+- N�2 .N&1(x) =.N( y).

The Laguerre Ensembles. Here w(x)=x:e&x and

pj (x)=� j !
1 ( j+:+1)

L (:)
j (x) (4.1)

where L (:)
j is the generalized Laguerre polynomial. We assume at first that

:>0 so that Eq. (2.4) holds. In the notation of Eq. (3.1) and (3.2) we have

aN=&- N(N+:),

A(x)=x&1 \N+
:
2+&

1
2

,

B(x)=C(x)=&x&1
- N(N+:).

The pole is at x=0, and if we set !j (x)=x&1.j (x) then Eq. (3.2) becomes

- N(N+:) (!N(x) !N&1(x)) \&- N(N+:)
N+:�2

N+:�2
&- N(N+:)+\

!N( y)
!N&1( y)+ .

(4.2)

Our functions �1 and �2 are linear combinations of !N and !N&1 ,
with �1 lying in H and �2 lying in H=. Clearly �1 is a constant times
pN&1(0) !N(x)& pN(0) !N&1(x). Since L (:)

N (0)�L (:)
N&1(0)=(N+:)�N we see

using Eq. (4.1) that we may take

�1=- N !N&- N+: !N&1 .

For �2 , it follows from the discussion near the beginning of the last section
that the appropriate linear combination of !N and !N&1 may be found
by requiring that it be orthogonal to .0 . From the fact that
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��
0 L (:)

m (x) x:&1e&x dx=1 (:) and from Eq. (4.1) we see that the linear
combination

�2=- N+: !N&- N !N&1

does the job.
Solving for !N and !N&1 in terms of �1 and �2 and substituting into

Eq. (4.2) we obtain for the kernel of [D, K],

&
- N(N+:)

2
(�1(x) �2(x)) \0 1

1 0+\
�1( y)
�2( y)+ .

Therefore

*=&
- N(N+:)

2
.

Hence for this ensemble we find that S (4)
N (x, y) is equal to KN(x, y) plus

- N(N+:)
2

(- N+: !N(x)&- N !N&1(x))

_(- N =!N( y)&- N+: =!N&1( y)) (4.3)

and that S (1)
N (x, y) is equal to KN(x, y) plus

- N(N+:)
2

(- N !N(x)&- N+: !N&1(x))

_(- N+: =!N( y)&- N =!N&1( y)). (4.4)

These were established for :>0. For &1<:�0 we must find the
analytic continuations of the factors in Eq. (4.3) and (4.4). The first factors
cause no difficulty since they are defined and analytic for :>&1. The same
is true of the second factor in Eq. (4.3) since - N pN&- N+: pN&1 has
zero constant term for :>0 (since �1 # H) and so for all :.

The second factor in Eq. (4.4) requires analytic continuation. Assuming
at first that :>0 we write it as

&|
�

y
(- N+: !N(z)&- N !N&1(z) dz

+ 1
2 |

�

0
(- N+: !N(z)&- N !N&1(z)) dz. (4.5)
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Now the fact =�1 # H established earlier implies that ��
0 �1(z) dz=0. This

is equivalent to

- N |
�

0
!N(z) dz=- N+: |

�

0
!N&1(z) dz

so the last integral, with its factor 1�2, is equal to

1
2 |

�

0 \- N+:&
N

- N+:+ !N(z) dz

=
:

2 - N+: |
�

0
z:�2&1e&z�2pN(z) dz=&

1

- N+: |
�

0
z:�2(e&z�2pN(z)$ dz.

Hence the second factor in Eq. (4.4) is equal to

&|
�

y
(- N+: !N(z)&- N !N&1(z)) dz

&
1

- N+: |
�

0
z:�2(e&z�2pN(z))$ dz. (4.6)

This is analytic for all :> &1 and so provides the desired analytic con-
tinuation.

It is to be remarked (we thank the referee for this observation) that
the second integral in Eq. (4.5), which is equal to (N !�1 (N+:))1�2

��
0 z:�2&1e&z�2L (:&1)

N dz, has already occurred in the study of the Laguerre
ensemble and can be explicitly evaluated in terms of gamma functions(5, 11).

When :=0

LN(x)&LN&1(x)=
x
N

L$N(x),

and we find that

S (4)
N (x, y)=KN(x, y)+ 1

2 e&x�2L$N(x) |
y

0
e&z�2L$N(z) dz,

S (1)
N (x, y)=KN(x, y)+ 1

2 e&x�2L$N(x) \|
y

0
e&z�2L$N(z) dz+1+ .

For both we used the fact ��
0 �1(z) dz=0 once again and, for the latter,

Eq. (4.6). These formulas, in somewhat different form, are those obtained
earlier using skew-orthogonal polynomials.(6, 7)
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